Design of an energy efficient and low cost trap for Olive fly monitoring using a ZigBee based Wireless Sensor Network

Alorda, B.⁽¹⁾, <u>Valdés, F.⁽¹⁾</u>, Mas, B.⁽¹⁾, Leza, M.⁽²⁾, Almenar, L.⁽²⁾, Feliu, J.⁽³⁾, Ruiz, M.⁽³⁾, Miranda, M.A.⁽²⁾

⁽¹⁾ Electronic Systems Group, Dept. of Physics. ⁽²⁾ Laboratory of Zoology, Dept. of Biology. ⁽³⁾ GIS Laboratory. Balearic Islands University

tomeu.alorda@uib.es

ferran@fvcengineering.com

Wireless Sensor Network Layout

The trap architecture is proposed to be scalable in terms of monitoring variables and number of traps

- Flytrap features:
 - Solar Powered
 - Easily installed/removed
 - Non-fixed Sticky position
 - Identification fly capabilities
 - Temperature and Humidity measurement
 - Sticky photography transmission for remote observation



Spain January, 2015

WSN Pilot Implementation

Power analysis ALL MAN THERE AN 1 0.9 0.8 Packet Received Rate 0.7 0.6 Ptx 1 0.5 Ptx 2 0.4 A Ptx 3 0.3 × Ptx 4 0.2 0.1 0 20 0 10 30 50 40 70 80 Link Quality Index (LQI)

Data Transfer Measurements

Spain January, 2015

